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Abstract

In part I of the paper we develop a likelihood-ratio based procedure for testing for a change in
the hazard rate of the exponential lifetime distribution when the test subjects enter at random
times and the Type I censoring occurs. First we show that the profile log-likelihood ratio process
converges weakly to a non-stationary Gaussian process. By suitable transformation we show that
the limiting process becomes the Ornstein-Uhlenbeck process and derive the critical values of the
test by considering the tail distribution of the supremum of the Ornstein–Uhlenbeck process. We
consider the power of the test by Monte Carlo simulation.

In part II, under the same setting as in part I we consider the interval estimation for the hazard
rate change using the local likelihood ratio approach. We establish the weak convergence of
the approximate local likelihood ratio process and obtain the closed form for the approximate
distribution of the supremum of the limiting process which does not depend on the change point.
By inverting the log likelihood function, we construct a confidence interval for the change point.
Using Monte Carlo simulation we compare the empirical coverge probability of the confidence
interval with nominal confidence level and discuss the effect of smoothing of the log-likelihood
function on the coverage probability and length of the interval.

1 Testing for a change in the hazard rate with staggered entry

1.1 Model setup

Suppose that the patients enter the treatment at times 0 < τ1 < τ2 < · · · , following a Poisson process with
rate γ. Let N be the total number of patients entered in the time interval [0, T ]. For i = 1, . . . , N , let Yi be
the survival time of the ith patient; and suppose that the distribution of the Yi is of the form

fY (y) =

{

λ1e
−λ1y if y < ν;

λ2e
−λ1ν−λ2(y−ν) if y ≥ ν,

where 0 < λ1, λ2, ν are unknown parameters. That is, the failure rate may change at an unknown time ν.
The model is irregular in that ν only has meaning if λ1 6= λ2. Moreover, in this setup, testing the presence

of change point ν is translated to testing the hypothesis H0 : λ1 = λ2 vs. H1 : λ1 6= λ2. In the first part of
the paper, we develop a test based on the observations

Xi = min(Yi, T − τi)

and

δi = 1{Yi ≤ T − τi}

where 1{A} denotes the indicator of A. Let ` [λ1, λ2, ν] denote the log-likelihood function. Then the profile
log-likelihood ratio statistic Λ for testing H0 versus H1 for a fixed change point ν is

Λ(ν) = `(λ̂1(ν), λ̂2(ν), ν) − `(λ̂, λ̂)



where λ̂1(ν) and λ̂2(ν) are the maximum likelihood estimators (MLE) of λ1 and λ2, respectively, and λ̂ is
the MLE of the common hazard rate λ under H0.

The test depends on two design parameters 0 < a < b < 1 and rejects H0 if the supremum of Λ(ν) where
aT ≤ ν ≤ bT is larger than a certain critical value. Inclusion of a and b here is necessary because a change
point at ν = 0 or ν = T is indistinguishable from H0 within the context of the model. Given so, the test
only looks for changes that occur between aT and bT.

1.2 Other studies

A log-likelihood based test for change point in the hazard rate is not new. In a different formulation,
Matthews and Farewell (1982) considered the testing problem using uncensored observations. Based on
Monte Carlo simulation, they suggested that moderate amount of Type I censoring has little impact on the
null distribution of the test statistic.

Worsely (1988) obtained the exact null distribution of a restricted version of the likelihood ratio test
statistic. He showed that the null distribution remains unchanged under Type II censoring. He also showed
that the distribution heavily depends on the interval to which the change point is assumed to belong.

Loader (1991) considered the problem and concluded, using a heuristic argument, that the effect of
random censoring on the significance level of the test to be relatively minor.

Matthews and Farewell (1985) studied the testing problem using the normalized score statistic and showed
that the score process converges weakly to an Ornstein–Uhlenbeck process when the hazard rate is known
and to a Brownian bridge when the hazard rate is unknown.

Our approach differs from these early studies in that the model allows random entry time (staggered
entry) and the Type I censoring is explicitly built into the model.

1.3 Main result

It can be shown that twice the log-likelihood is equal to the square of a normalized process Zn(ν), say, plus
a remainder term that vanishes as n tends to infinity. Furthermore, we can prove that under H0, for any
0 < a < b < 1, Zn(ν) defined on [a, b] converges in distribution to a Gaussian process Z(ν) on the same
interval. The limiting process Z(ν) has zero mean and unit variance and the covariance function

ρ(ν1, ν2) =

√

g1(ν1 ∧ ν2) · g2(ν1 ∨ ν2)

g1(ν1 ∨ ν2) · g2(ν1 ∧ ν2)

for certain functions g1(ν) and g2(ν).
In order to obtain critical values for the test, we need to compute the tail probability of the supremum of

the absolute value of Z(ν). In general, finding the supremum distribution of a nonstationary Gaussian process
is a difficult problem and it usually requires extensive Monte Carlo simulation to determine the critical values.
Fortunately, in this case we can find a suitable transformation that transforms the nonstationary Gaussian
process to an Ornstein–Uhlenbeck process whose properties have been extensively studied in the literature.
Approximate tail probability of supa≤ν≤b |Z(ν)| can be derived by the transformation and application of
Theorem 12.2.9 in Leadbetter, Lindgren and Rootzén (1983).

1.4 Simulation

Monte Carlo simulation study shows that, not surprisingly, the sup distribution is far more affected by
the length of the considered subinterval [a, b] and much less so by the actual location of the interval. The
power functions show U-shaped patterns, typical for two-sided tests. Interestingly, the power function are
not symmetric. In general the test has greater power when λ1 < λ2 then when λ1 > λ2. This interesting
asymmetry can be explained by the Hellinger distance. Since we would expect any properly constructed test
to correctly reject the null hypothesis when the true underlying distribution is far from the null distribution,
greater Hellinger distance imply higher power and in fact a routine calculation shows that the distance
function is greater when λ1 < λ2 then when λ1 > λ2 even though the parameters may have the same
absolute difference. Power function tends to decrease as the true change point is located on the right side of
the considered interval.



2 Interval estimation for change point in the hazard rate

2.1 Model setup and background

In the same setup as above, we consider the problem of constructing a confidence interval for the change
point. Two main approaches for the interval estimation of change point are based on: (1) limiting distribution
of the MLE as Yao (1986) derived under some constraint, and (2) inversion of the log-likelihood process as
in the works by Siegmund (1988) and Loader (1991).

By the jagged nature of the log-likelihood function, the inversion produces a confidence set consisting of
disjoint intervals and Siegmund advocated the use of a single connected interval encompassing all the disjoint
intervals and we follow his suggestion regarding confidence interval construction.

Loader applied the inversion technique to a change point confidence interval construction under expo-
nential random censoring in a non-staggered entry scenario. Our work is different from their results in that
the random entry time is allowed as well as Type I censoring is built into the model. Asymptotic theory
based on local likelihood ratio process near the change point is also new.

2.2 Main result

The local likelihood ratio process Zγ(u) can be approximated by its two-term Taylor expansion Z∗
γ(u) and

we can prove that as γ → ∞, Z∗
γ(u) weakly converges to a process Y (u), say, in the Skorohod space D[a, b]

for any −∞ < a < b < ∞. Furthermore, we can approximate the distribution of the supremum of Y (u) by
a function F ∗(x). That is, we can write

P

{

sup
u

Y (u) ≤ x

}

≈ F ∗(x) = (1 − e−x)(1 − e−xκ(λ1/λ2))

where

κ(x) =

(

1 − x + x log x

x − 1 − log x

)−sgn(log x)

.

Notably, this approximating function is independent of the change point. For a given α > 0, we can compute
c = c(α) from the equation

F ∗(c) = 1 − α

and for this particular value of c, an approximate 100(1− α)% confidence interval for ν can be obtained by
inverting the log-likelihood function.

2.3 Simulation

Monte Carlo simulation study shows that the confidence intervals constructed in this way tends to cover the
true change point more often than the nominal coverage probability. To alleviate this excessive coverage
probability of the confidence interval, we consider the nonparametric smoothing of the log-likelihood function
prior to the inversion. We note that the usual criterion for smoothing such as cross validation does not work
because the construction of change point depends on only a very small portion of the likelihood function and
the data driven smoothing tends to completely wipe out the are, defeating the very purpose of smoothing.
Evidences from simulation indicate that a small amount of smoothing is preferred because it substantially
reduces the excessive coverage probability and shorten the average length of the confidence interval.
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